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Linkage analysis evaluates recombination events between genetic 
markers and potential causal alleles in families to map phenotypic 
loci1. In comparison, genetic association tests detect genetic markers  
that are correlated with phenotypes among unrelated individuals. 
Traditionally, both types of analyses use genetic markers such as 
microsatellites or single nucleotide polymorphisms (SNPs). Thus, 
the corresponding statistical methods usually test against the null 
hypothesis that the focal variants are in linkage or linkage disequi-
librium with causal variants and do not assume that causal variants 
are directly observable. High-throughput sequencing techniques 
now allow comprehensive detection of rare and private variants 
throughout the exome or whole genome. To take advantage of the 
increased availability of sequencing data, rare-variant association 
tests (RVATs) have been developed to aggregate rare variants in each 
gene, which reduces multiple comparison problems and increases 
the statistical power for discovering disease-associated genes2–4. 
Once disease loci have been identified through association or  
linkage studies, variant classifiers such as SIFT5 and PolyPhen-2 
(ref. 6) are often used to prioritize rare mutations that are likely to 
be damaging.

Association tests and linkage analysis use two different types of 
information to perform disease locus mapping. Both methods take 
advantage of genetic recombination information; however, association 
signals derive mostly from the historical recombination events in the 
population, whereas linkage analysis makes use only of recombination 
events that occurred in the pedigree under investigation. In a biological  
sense, these two types of data are related; yet, from a statistical point 
of view, they provide orthogonal and thus complementary informa-
tion about the disease locus. Currently, comprehensive analysis of 
pedigree sequencing data is a labor-intensive process that requires an 
array of bioinformatics tools (linkage analysis, association tests and 
variant classifiers). Given these challenges, most pedigree sequencing 
studies apply a simplified and suboptimal approach involving a series 
of ad hoc filtering criteria7. A few existing tests use family data in rare-
variant association tests (for example, refs. 8 and 9). By accounting 
for pedigree relationships using an appropriate covariance matrix, 
these tests use information from related pedigree members without 
inflating type I error with large sample sizes. However, these methods 
capture only association signals and do not incorporate linkage or 
variant-classification information.
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One particular challenge in pedigree analysis lies in mapping de novo 
causal mutations, i.e., private mutations that occurred in the germline of 
affected individuals. De novo mutations can cause rare Mendelian diseases10 
as well as common complex diseases such as autism11. However, the analyses 
of de novo mutations face a few nontrivial challenges: (i) De novo mutations 
are not in linkage with any other genetic markers; as a result, traditional link-
age methods cannot analyze them; (ii) sequencing technologies will generate 
a number of erroneous variant calls that resemble de novo mutations, and 
failing to properly account for the platform-specific genotyping errors may 
introduce either type I or type II errors; (iii) in large-scale pedigree studies 
of complex genetic diseases, both de novo and inherited mutations can con-
tribute to the disease prevalence; separately analyzing the risk of these two 
types of disease mutations will result in a loss of power.

Previously, we developed the Variant Annotation, Analysis and 
Search Tool (VAAST)12,13. VAAST implements an RVAT that uses a 
composite likelihood ratio test (CLRTv) to incorporate two types of 
genetic information: allele frequency differences between cases and 
controls and variant classification information from phylogenetic con-
servation and predicted biochemical function. VAAST performs variant 
classification in conjunction with the association test. Variants with a 
high likelihood under the disease model (for example, variants with 
large differences in case and control frequencies and producing non-
conservative amino acid changes) receive high CLRT scores, whereas 
variants predicted as neutral by VAAST receive a score of 0. For this  
reason, VAAST is robust to inclusion of common variants. More 
recently, we demonstrated that VAAST is applicable to a wide array of 
disease scenarios using both simulations and empirical data sets13.

Here we present pVAAST, a tool that combines linkage analysis, case-
control association and functional variant prediction in a unified statistical 
framework that offers much higher power relative to each of the individual 
methods. We demonstrate the utility of pVAAST in a variety of simulated 
and real data sets involving dominant, recessive and de novo patterns of 
inheritance across a broad range of family-based study designs.

RESULTS
pVAAST
pVAAST searches through the personal genomic data from disease pedi-
grees, sporadic cases and unaffected controls to identify genes associated 
with disease. To do so, it combines logarithm of odds (lod) scores with 
association signals to generate a unified test statistic that offers a higher 
power compared to either method alone. Unlike lod scores in traditional 
parametric linkage analysis, the lod score in pVAAST is designed for 
sequence data. Specifically, the statistical model assumes that the dysfunc-
tional variants influencing disease-susceptibility can be directly detected. 
As a result, the pVAAST lod score is in general more powerful than tradi-
tional linkage analysis with sequencing data, as we show below. Moreover, 
this assumption allows us to calculate lod scores for de novo mutations, 
which is not possible with traditional linkage analysis, given that de novo 
mutations are not in linkage with other markers. pVAAST is built upon 
the CLRT used in VAAST, but in addition integrates the linkage informa-
tion (quantified by a lod score) as a separate log likelihood ratio in the 
pVAAST CLRT (CLRTp) (Fig. 1). pVAAST evaluates the significance of 
the CLRTp score using a combination of a randomization test and a gene-
drop simulation14 (Online Methods).

Simulated family data
We first evaluated the performance of pVAAST to identify variants caus-
ing rare Mendelian diseases using simulated family data and unaffected 
control genomes (we recorded the parameterization of all pVAAST experi-
ments in this manuscript in Supplementary Note 1). We investigated three 
disease models using both association- and pedigree-based approaches: 

dominant, recessive and dominant resulting from de novo mutations. 
In all models, we compared pVAAST with two rare-variant association 
tests, VAAST12 and SKAT-O3 (version 0.91; using the ‘linear.weighted’ 
kernel and ‘optimal.adj’ method). For comparison, we also included a 
nonparametric linkage method based on an idealized scenario with per-
fect knowledge of identity-by-descent (IBD) states in all families and a 
two-point parametric linkage analysis using Superlink15 for dominant 
and recessive models (Supplementary Note 2). For the de novo model, 
we included a Poisson-based test, which detects excess inheritance error 
in cases (Supplementary Note 2). pVAAST correctly controls for type I 
error in all three scenarios (Supplementary Fig. 1).

We used each method to analyze the required sample size at four 
different levels of population-attributable risk (PAR)16 (Fig. 2a–c). 
Under all disease models, pVAAST was consistently the most powerful  
approach. The required sample size of pVAAST was usually an order 
of magnitude lower than for nonparametric linkage analysis, demon-
strating the value of case-control sequencing data in the identification 
of genes associated with rare Mendelian diseases. Under dominant and 
de novo models, pVAAST typically required half the sample size of 
VAAST, and one-fifth the sample size of SKAT-O. Under the de novo 
model, the Poisson-based test was more powerful than rare-variant  
association tests alone (VAAST and SKAT-O), but substantially less 
powerful than pVAAST. In general, parametric linkage analysis per-
formed worse than nonparametric (Fig. 2a–b and Supplementary 
Table 1), which is expected given that our nonparametric test was 
based on perfect knowledge of IBD states.

We also benchmarked the performance of pVAAST in common, 
complex diseases by simulating four-generation families (Fig. 2d). 
We compared the relative performance of four different choices of 
sequenced pedigree members: affected parent-offspring pairs, affected 
first-cousin pairs, affected second-cousin pairs and the entire pedi-
gree. We simulated mildly deleterious risk alleles with a selection 
coefficient of 0.001, which resulted in an average MAF of 1.9 × 10−3 
(Fig. 2e). With all pedigree members shown in Figure 2e, pVAAST 
required only 66% of the sample size of VAAST, and with affected 
first- or second-cousin pairs, pVAAST required 79% the sample size 
of VAAST (Fig. 2e). We observed no performance improvement with  
affected parent-offspring pairs in pVAAST compared to VAAST. With 
a selection coefficient of 0.01 (average MAF = 2.2 × 10−4) (Fig. 2f), we 
observed a similar trend but with slightly better pVAAST performance in  
all scenarios. pVAAST correctly controlled for type I error in all  
scenarios (Supplementary Fig. 2). For both the rare and common 
disease simulations, we also compared the performance of pVAAST 
to ASKAT9 (version 1.2d, build 2013-09-05), an extension of SKAT 

CLRTv

Cases

Pedigrees

Unrelated cases

Additional 
cases

CLRTp

lod

Controls

Functional 
prediction

Figure 1  A schematic illustration of pVAAST. The three components of 
the pVAAST CLRTp are binomial likelihood test based on alleles counts in 
cases and controls (CLRTv), functional prediction likelihood ratio and lod 
score. These are summed to generate the central test statistic of pVAAST.
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that accommodates family-based studies. However, ASKAT controls 
for familial relationships through asymptotic assumptions, and for 
the relatively small sample sizes that we evaluated, the type I error of 
ASKAT was inflated (Supplementary Fig. 3a–f).

De novo inheritance in an enteropathy pedigree
We performed whole-genome sequencing on a family quartet and used 
pVAAST to identify the potential causal mutation for a child with undi-
agnosed enteropathy (Fig. 3a). The proband was a 12-year-old male 
with severe diarrhea, total villous atrophy and hypothyroidism. Both 
parents and the sibling of the proband were unaffected. The pheno-
type was most consistent with the IPEX syndrome (OMIM 304790), 
but clinical sequencing of the FOXP3 and IL2RA genes revealed no 
pathogenic mutations.

We analyzed this pedigree using both the dominant and recessive mod-
els in pVAAST. Under the dominant model, the highest-ranking gene, 
STAT1, had a P value of 3.97 × 10−6. The only variant in this gene is a de 
novo mutation in the affected child, with a lod score of 0.70 and a CLRTp 
score of 11.724. The second ranking gene was PAX3 (P = 3.33 × 10−3; 
lod score = 0 and CLRTp score = 11.047). STAT1 was the only gene in 
the genome with a lod score >0.1; genes with lod scores between 0.1 and 
0 fit an inheritance pattern of dominance with incomplete penetrance. 
Under the recessive model, no gene has a P value <1.18 × 10−3 (Fig. 3b). 
We validated the de novo inheritance pattern by genotyping the offspring 
and parental genotypes with Sanger sequencing. Other than this muta-
tion, we did not identify any exonic variation in STAT1 in the family.  

This heterozygous mutation is observed only in the proband but not in 
the parents or unaffected sibling.

The de novo mutation found in the affected child is a single-nucleotide  
guanine-to-adenine mutation, causing the amino acid change T385M in 
the DNA-binding motif of STAT1; the reference allele–encoded threonine 
is conserved among almost all sequenced vertebrate genomes17. STAT1 
encodes a transcription factor belonging to the signal transducers and acti-
vator of transcription family; both gain- and loss-of-function mutations in 
STAT1 cause human disease18. Gain-of-function mutations in STAT1 cause 
autosomal dominant chronic mucocutaneous candidiasis (CMC)19–21  
and an IPEX-like phenotype22. The T385M mutation was reported as a 
cause of CMC in a Japanese patient23 and a Ukrainian patient24. These data 
support T385M as the causative mutation for this patient’s phenotype, and 
demonstrate pVAAST’s ability to identify a causal de novo mutation from 
a family quartet with a single affected proband.

Dominant inheritance in a cardiac septal defect pedigree
We analyzed whole-genome sequencing data from a previous study25 
on a single pedigree affected with cardiac septal defects and having 
an autosomal dominant pattern of inheritance (Fig. 4a). Previously25, 
the G296S mutation in GATA-binding protein 4 (encoded by GATA4)  
was identified as the cause of cardiac septal defects in this pedigree 
using genome-wide linkage mapping followed by sequencing of the 
GATA4 coding region and functional studies. pVAAST successfully 
identified GATA4 with genome-wide significance (P = 2.0 × 10−9; 
Fig. 4b). The mutation encoding G296S had a CLRTp score of 38.4 
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Figure 2  Rare Mendelian and common complex disease simulations. (a–c) Sample sizes required to achieve 80% power by VAAST, pVAAST, SKAT-O, 
parametric linkage, nonparametric linkage and a Poisson-based test, in rare Mendelian disease simulations. (a) A dominant model simulation, assuming 
two affected cousins from each pedigree are sequenced. (b) A recessive model simulation, assuming two affected siblings from each pedigree are 
sequenced. (c) A de novo mutation model simulation, assuming the whole trio is sequenced and genotyping error rate is 1 × 10−5. At PAR = 0.1 in a, the 
required sample size to achieve 80% by the parametric linkage test is greater than the maximal sample size that we evaluated (1,000); thus we did not 
show this data point. (d–f) Benchmark experiments on simulated common complex disease pedigrees. (d) Simulated pedigree structure. Individuals labeled 
‘A’ were always affected; other individuals were allowed to be either affected or unaffected in the rejection sampling. (e) Required sample size to achieve 
80% power when selection coefficient is 0.001. (f) Required sample size to achieve 80% power when selection coefficient is 0.01. In e and f, PAR was 0.05. 
Sample size is defined as the number of pedigrees used for the analysis. Type I error was set to 5 × 10−4. In all experiments 1,000 control genomes were used.
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(CLRTv score = 13.2; lod score = 5.47), and no other variants received 
a positive CLRTv or lod score in GATA4. The second-ranking gene was 
ITIH2, with a P value of 2.3 × 10−5 and a lod score of 1.51. Because 
the prevalence parameter (disease prevalence in general population) 
was set to 0.01 to match that of cardiac septal defects, no other gene 
received a positive lod score in the pedigree. ASKAT was not applica-
ble to this example owing to the small sample size (Supplementary 
Fig. 3g). When VAAST analyzed the genomic sequence of a single 
affected individual in the cardiac septal defect pedigree (the affected 
individual in the second generation), GATA4 was ranked forty-first 
genome-wide, with a P value of 2.0 × 10−3 (Supplementary Fig. 4).

We also analyzed the cardiac septal defect pedigree using a  
two-point parametric linkage test implemented in Superlink15. The 
mutation encoding G296S in GATA4 has a lod score of 5.13 and was 
the highest-scoring variant genome-wide. Assuming 2ln(10lod) is χ2 
distributed with two degrees of freedom (penetrance and recombina-
tion frequency), the P value of the mutation encoding G296S from 
two-point linkage analysis was 7.32 × 10−6.

Recessive inheritance in a Miller’s syndrome pedigree
We investigated the performance of pVAAST on a recessive disease, 
Miller’s syndrome, using previously generated7 whole-genome sequenc-
ing data from a two-generation pedigree (Fig. 5a). The two offspring are 
affected with Miller’s syndrome and primary ciliary dyskinesia, both of 
which are rare recessive Mendelian diseases. The two diseases are caused 
by compound heterozygous mutations in the DHODH and DNAH5 genes, 
respectively7. All four individuals in the family quartet were sequenced. 
pVAAST identified only five genes with positive lod scores, and the two 
disease-causal genes (DHODH and DNAH5) were ranked first and second 
genome-wide (Fig. 5b), with P values of 3.3 × 10−5 and 1.3 × 10−4, and 
CLRTv scores of 27.9 and 30.8, respectively. The lod scores were 1.204 in 
both cases. In both genes, only the two causal mutations received positive 
scores; all other variants had scores of 0.

We also explored the performance of pVAAST after removing one 
affected child (B01) from the pedigree. That is, we converted the original  
Miller’s syndrome pedigree to a trio family with two unaffected  
parents and one affected child. In this scenario, DHODH and 
DNAH5 were ranked first and thirteenth genome-wide, respectively 
(Supplementary Fig. 5a), both with lod scores of 0.602. We also ran 
VAAST over the genome-sequencing data of only one affected child (i.e., 
not using the data from the parents and the affected sibling). DHODH 
and DNAH5 were ranked tenth and twenty-seventh, respectively  
(Supplementary Fig. 5b). In our previous work, by enforcing a strict 
filtering method based on inheritance patterns and minor allele  
frequencies, VAAST was also able to identify the correct causal  
genes in this pedigree but was unable to produce an accurate P value 
that accounted for the familial relationships12.

Challenging situations in pedigree studies
In linkage analysis, factors such as incomplete penetrance, locus  
heterogeneity and missing phenotypes negatively affect linkage signals 
and thus reduce disease-gene identification power. The cardiac septal 
defect pedigree data presented above (Fig. 4) is a large pedigree with 
no locus heterogeneity and very high penetrance (93.3%) for the muta-
tion encoding G296S. We modified the genotype and phenotype data 
from this pedigree (Supplementary Note 3) to benchmark pVAAST 
in four scenarios: (i) missing phenotypes, (ii) reduced penetrance, (iii) 
locus heterogeneity and (iv) reduced number of informative meioses 
in the family. For each test case, we evaluated the lod score and the 
genome-wide ranking of GATA4 (ranked by P values). The lod score 
reported by pVAAST was approximately a monotonic function of each 
of the four parameters and was highly correlated with the classic two-
point parametric lod score (Fig. 6). pVAAST was robust to pedigrees 
with missing phenotype data. For example, when 82% of pedigree 
members had unknown phenotypes, the lod score of GATA4 was 1.5 
and genome-wide ranking was first (Fig. 6a,b). Reduced penetrance 
generally decreased the lod score without significantly compromising 

U U

U A

a

b

–l
og

(P
)

0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

D
om

inant
R

ecessive

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosome

STAT1

Figure 3  pVAAST results on the enteropathy pedigree. (a) The pedigree 
structure. A, affected; U, unaffected. (b) The genome-wide gene P values 
reported by pVAAST under dominant and recessive models. The x axis 
shows the genomic locations arranged by chromosome.

a

b

–l
og

(P
)

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosome

GATA4

ITIH2

Whole-genome sequence available
Cardiac septal defect

Figure 4  pVAAST identifies the dominant causal gene GATA4 in cardiac 
septal defect pedigree. (a) Illustration of the cardiac septal defect 
pedigree. (b) Manhattan plot of the P values of all protein-encoding genes 
from the pVAAST run; each dot in the plot represents one gene. The x axis 
shows the genomic locations arranged by chromosome.



©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature biotechnology  advance online publication	 �

A rt i c l e s

the genome-wide ranking (Fig. 6c,d). Specifically, the genome-wide 
ranking of GATA4 was consistently first until the penetrance dropped 
below 40%; even with penetrance of 20%, GATA4 was ranked eighth 
genome-wide. In comparison, locus heterogeneity had a greater impact 
on power (Fig. 6e,f). When locus heterogeneity was modest, GATA4 
always ranked first or second. However, when the proportion of affected 
individuals carrying G296S fell to 50%, the lod score dropped below 0.2, 
and the genome-wide ranking was beyond fiftieth. The original family 
has 20 informative meiosis events, and our results show pVAAST ranked 
GATA4 first genome-wide even when there are only 11 informative 
meioses in the family (Fig. 6g). Furthermore, with only six meioses, 
pVAAST still ranked GATA4 second genome-wide. This suggests that 
for a rare Mendelian disease with high penetrance and low locus hetero-
geneity within the family, the risk gene can often be identified among 
the top hits genome-wide using a typical three-generation pedigree.

For comparison, we evaluated the genome-wide ranking of GATA4 
with three alternative approaches. In the first approach, we calcu-
lated a two-point parametric lod score at each polymorphism site with 
Superlink15 and designated the lod score from the best-scoring site 
overlapping a protein-encoding gene as the gene lod score. We then 
ranked all genes by the gene lod scores. We also attempted to perform 
multipoint linkage analysis with Merlin26, but this proved compu-
tationally infeasible. In the second approach, we applied the same 
procedure to the pVAAST lod score to calculate the ranking (Fig. 6).  
Finally, we evaluated a hard-filtering approach that only considered 
variants that perfectly fit the expected inheritance pattern with minor 
allele frequencies below 0.5% (Supplementary Note 3).

We found that the pVAAST lod score was consistently more 
robust than the classic two-point parametric lod score in challenging  

scenarios such as low penetrance, high locus heterogeneity, small sam-
ple size and large fraction of unknown phenotypes. The ranking of 
GATA4 with pVAAST lod scores was usually one order of magnitude 
higher than with Superlink. This performance difference is perhaps not 
surprising given that traditional linkage analysis tests the hypothesis 
of disease linkage rather than disease causation and was developed for 
sparse marker data rather than complete sequence data. Ranking using 
pVAAST P values instead of lod scores further improved the accuracy 
of disease-gene identification, and the improvement was pronounced 
when the penetrance was low or the phenotypes were missing for a 
large fraction of the pedigree. Hard-filtering makes strict assumptions 
about the expected inheritance pattern and minor allele frequency of 
the causal mutation. When these assumptions hold, hard-filtering has 
comparable performance to traditional two-point linkage analysis but 
is less robust compared to pVAAST and pVAAST lod scores. However, 
hard filtering performed very poorly when any of these assumptions 
were violated (Fig. 6e).
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We also investigated the impact of incomplete penetrance, locus hetero-
geneity and unknown phenotypes in conjunction with smaller family sizes. 
To do so, we used only a subset of the individuals in the original cardiac 
septal defect pedigree to reduce the number of informative meiosis. We 
evaluated the genome-wide ranking of GATA4 using pVAAST, pVAAST lod 
scores, two-point linkage analysis in Superlink, multipoint linkage analysis 
in Merlin26 and hard filtering (Supplementary Figs. 6–8). The ranking of 
GATA4 was highest when using pVAAST in almost all scenarios, which is 
consistent with the results involving the entire family (Fig. 6).

DISCUSSION
Because pVAAST employs the same CLRT framework as its predecessor, 
VAAST, a comparison of these two algorithms demonstrates the power 
gained by using inheritance information from pedigrees. In dominant 
rare Mendelian diseases, the improvement is remarkable: when an addi-
tional affected cousin was sequenced, pVAAST required only half the 
number of families as VAAST (Fig. 2a), regardless of the level of locus 
heterogeneity. These results demonstrate that although linkage analysis 
is usually substantially less powerful than a rare-variant association test 
(RVAT) alone, in these scenarios, linkage provides orthogonal informa-
tion for disease-gene identification, and this information can greatly 
improve the power of association tests. Although RVATs were initially 
developed for common genetic disorders, we previously demonstrated 
that they are more powerful than standard hard-filtering approaches 
often used to analyze rare Mendelian diseases12,13. The current study 
extends this work and provides a unified test that computes a single  
P value over the combined linkage and association evidence.

Classic linkage methods were designed for sparse genetic-marker data 
and model the recombination frequencies between genetic markers and 
disease to identify large genomic regions in the family that may harbor 
a causal mutation. In contrast, pVAAST is designed for sequence-based 
studies and assumes that the causal mutations can be directly assayed. 
Our model also incorporates an additional unobserved risk locus 
(latent locus) to capture an additional layer of genetic architecture of the  
disease, enabling pVAAST to accurately model complex diseases in families 
with phenocopies or locus heterogeneity. For these reasons, the pVAAST 
lod score typically outperformed both the classic two-point (Fig. 6)  
and multipoint (Supplementary Figs. 6–8) parametric lod scores in the  
scenarios we evaluated, particularly in challenging scenarios relevant to 
common, complex disease involving reduced penetrance, locus hetero-
geneity, small sample size or missing phenotypes.

Our results from the enteropathy, cardiac septal defect and Miller’s 
syndrome pedigrees demonstrate that pVAAST can successfully identify 
rare, Mendelian disease-causing variants from genome-wide searches 
involving only a single pedigree. In particular, the identification of STAT1 
as the likely cause of enteropathy in a small pedigree establishes that 
excellent statistical resolution can be achieved in a small family with a 
disease-causing de novo mutation (Fig. 3). It should be noted, however, 
that in de novo disease models the genotyping error rate has a large impact 
on power (Supplementary Fig. 9), and with higher genotyping error rates 
that can result from earlier sequencing or variant-calling technologies,  
a potential de novo mutation is more likely to be a sequencing error and 
less likely to be a true de novo event. The results shown in Figures 3–5 
also show that pVAAST is robust to technical complications that are 
present in real genomic data but not represented in simulations, such as 
genotyping errors, missing genotype calls and differences in sequencing 
platforms between cases and publicly available controls.

An important practical consideration is which family members to 
sequence to achieve optimal power. For rare Mendelian diseases with 
high penetrance, the choice is straightforward given that the inherit-
ance path of the causal mutation can be inferred. However, for common 

genetic disorders, determining the optimal choice of family members is 
more complex. Sequencing more distantly related individuals increases 
the number of informative meioses in the pedigree but also increases the 
probability of phenocopies. Here we show that in a common complex 
disease with a modest level of locus heterogeneity (PAR = 0.05 and only 
40% of affected individuals carrying mutations with odds ratio >1.1 
in the gene of interest; see also Supplementary Note 2), sequencing 
affected first- or second-cousin pairs yields substantially better results 
than sequencing affected parent-offspring pairs in the same family  
(Fig. 2e–f). Sequencing the entire extended family offers a modest 
improvement over cousin pairs, consistent with previous findings27.

If sample size is not a limiting factor, another consideration is the cost 
effectiveness of sequencing pedigrees versus unrelated cases. For example, 
as shown in the simulations of dominant inheritance, pVAAST requires 
half the number of pedigrees as VAAST but requires two individuals per 
pedigree to be sequenced (Fig. 2a). Thus, with affected cousin pairs, the two 
approaches are equally cost effective. However, in rare Mendelian diseases 
with high penetrance, because the P value decreases exponentially with 
the number of informative meiosis (Supplementary Fig. 10), sequencing 
affected pairs more distant than the first cousin is more cost-effective than 
sequencing only unrelated index cases from each pedigree. A two-stage 
design can also be cost effective. Specifically, in the first stage, only unre-
lated cases are sequenced, and VAAST prioritizes genes according to their 
significance levels. In the second stage, candidate risk variant in the rela-
tives of affected carriers are genotyped, and pVAAST analyzes the original 
sequence data with the additional genotype information. This approach 
can be economical given the relative costs genotyping and whole-exome 
sequencing. Although pVAAST is primarily designed for sequence data, 
it is also applicable to exome chip genotyping data. pVAAST was recently 
used to identify candidate genes associated with an increased risk of suicide 
from exome chip data in extended high-risk pedigrees28.

Because pVAAST combines linkage analysis and case-control 
association, all the caveats from these methods are applicable. In 
particular, loci not causally related to disease may be in linkage dis-
equilibrium with a causal locus in association studies. Therefore, as 
with traditional linkage analysis and association tests, rejection of 
the null hypothesis in pVAAST can establish disease-gene association 
but cannot rule out the possibility that the association results from 
a linked locus that is causal. As with other case-control association 
tests, uncontrolled confounding covariates can potentially inflate 
type I error rates in pVAAST. To control for covariates, pVAAST 
can interface with the BiasedUrn package29 (http://cran.r-project. 
org/web/packages/BiasedUrn/index.html) to conduct a covariate 
adjusted randomization test (Supplementary Note 4).

Existing family-based sequence-analysis approaches are typically appli-
cable to only a narrow range of studies. Hard filtering approaches that 
enforce strict inheritance patterns are appropriate for studies involving  
small families with rare Mendelian diseases but do not provide robust 
statistical interpretations and do not scale to large families or common, 
complex diseases7,30. Sequence analysis in large families typically involve 
multistep ad hoc procedures in which linkage analysis or IBD mapping 
is used to identify large genomic regions followed by the application of 
a series of hard filters based on inheritance patterns, variant annotations 
and population allele frequencies31. In addition, approaches that rely 
primarily on hard filters do not scale well to multifamily studies12,13. 
ASKAT is a family-based rare-variant association test that is designed 
for large, multifamily studies but is not presently applicable to studies 
involving relatively small sample sizes. Methods used to identify disease-
causing de novo mutations can efficiently combine statistical evidence 
from multiple families but require parent-offspring trios and cannot 
incorporate evidence from families with inherited disease32.

http://cran.r-project.org/web/packages/BiasedUrn/index.html
http://cran.r-project.org/web/packages/BiasedUrn/index.html
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pVAAST is also applicable to non-disease trait mapping in nonhuman 
species. In typical genetic screens in model organisms, researchers cross-
breed individuals with different phenotypes for generations and then 
map the locations of possible causal variants using linkage analysis. When 
sequencing data are available, pVAAST could be an attractive alternative 
to traditional mutation mapping in these studies, as it incorporates addi-
tional information from association signals and functional predictions of 
the mutations. This is especially true for species with high levels of genetic 
diversity such as rice33 and maize34, where a large proportion of near-neutral  
variants may complicate the identification of mutations responsible for the 
phenotype. The integrated variant classification functionality in VAAST 
and pVAAST may mitigate these challenges35,36.

In contrast to existing methods, pVAAST performs well across a 
wide range of study designs, from a single small family with a rare, 
Mendelian disease to hundreds of families with common, complex 
genetic diseases and arbitrary pedigree structures. pVAAST is a flex-
ible, general-purpose tool for identifying disease-associated genes 
that combines variant classification, rare-variant association testing 
and linkage analysis in a unified statistical framework to increase 
the power and reduce the technical complexity of family-based 
sequencing studies.

Methods
Methods and any associated references are available in the online  
version of the paper.

Accession codes. The human genome sequencing data for the enter-
opathy and cardiac septal defects pedigrees have been submitted to the 
database of Genotypes and Phenotypes (dbGaP), and accession codes 
will be provided as soon as they are available. Meanwhile, inquires 
about the data should be directed to M.Y. or C.D.H.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Basic lod score calculation in pVAAST. In classic two-point parametric link-
age analysis, the marker under investigation is usually assumed not to be causal 
but rather linked with the actual causal variant with a certain recombination 
probability (r). Under the null hypothesis, r = 0.5, which indicates that the 
marker and causal mutation are unlinked. Under the alternative hypothesis, 
r is a free parameter. Given the disease prevalence, allele frequency of the 
marker and causal allele and the penetrance of the causal allele, the likelihood 
of alternative and null model can be calculated for given values of r using the 
Elston-Stewart algorithm37. The log10 ratio of the maximum likelihood of the 
alternative and null model is the lod score.

For simplicity, we use the term causal to refer to any variant that directly 
increases disease risk, regardless of penetrance. Our model assumes that the 
disease is caused by either the locus under investigation (current locus) or 
some other unlinked locus in the genome (latent locus). In both models, 
the current and latent loci are unlinked, and there is no epistatic interaction 
between the alleles. The null model states that variant(s) in the latent locus 
cause the disease with some probability, and the current locus is not causal. 
The alternative model states that variants in both the current and latent loci 
can independently cause the disease, with different probabilities. In other 
words, the null model attributes the disease phenotype solely to the latent 
locus, and the alternative model allows variants in both the current and latent 
loci to be independently causal. We then maximize the likelihoods of the 
alternative and null models over ρc (genotype disease probability vector for the 
current variant), ρl (genotype disease probability vector for the latent locus) 
and fl (minor allele frequency of the latent locus) and calculate the log10 likeli-
hood ratio as the lod score. Formally,

 lod = −log max ( ) log max ( )10 10L alt L null

and the likelihood for both null model and alternative model has  
the form

L P g g p f fc l c l c l= ( , , | , , , )r r  

Here gc and gl are the genotype vectors (with values of 0, 1 and 2 correspond-
ing to homozygous-reference, heterozygous and homozygous-nonreference 
genotypes) of the current and latent variant sites; p is the phenotype vector of 
the pedigree; fc and fl are the allele frequencies of the current and latent alleles. 
Under the null model, the expression can be further decomposed into

P g g p f f P g f P g p fnull c l c l c l c c l l l( , , | , , , ) ( | ) ( , | , )r r r=  

because only the latent allele is causal for the disease under the null model, 
and gc is thus independent from p, gl and ρl.

Given ρc, ρl, fc and fl, all of the aforementioned probabilities can be calcu-
lated with the Elston-Stewart algorithm15 in linear computational time rela-
tive to the family size. We estimate fc from the allele frequency in a control 
population and perform a grid search over ρc, ρl and fl in the specified order 
to maximize the likelihood. By default, we explore ρc and ρl values ranging 
from 0 to 1 with increment of 0.1, and in addition the following values: 0.001, 
0.01 and 0.999. We explored the following fl values: 5 × 10−7, 5 × 10−4, 5 × 10−3, 
0.01, 0.02, 0.05, 0.5 and 0.999. The resolution of the grids is tunable. In all our 
experiments, the aforementioned parameters offer a good balance between 
algorithm efficiency and statistical power, although using a finer grid may 
increase the power of pVAAST at the cost of longer computation time. For 
the dominant model, a heterozygous genotype is sufficient to be considered 
as a risk genotype; for a simple recessive model, a homozygous genotype is 
required, with the exception of sex chromosomes. Compound heterozygous 
scenarios are discussed below.

If more than one family is present, for each variant, we maximize the likeli-
hood under the assumptions that ρc is consistent across families but ρl and  
fl varies between families using a nested grid search. Then, within each  
family, the lod of one variant is chosen to be the gene lod score of this family. 
By default, the variant with the highest CLRTv score is chosen, but the user can 
opt to use CLRTp score or lod score alone as well. In practice, we found that in 
large pedigrees, using the CLRTp score as a selection criterion may yield more 

favorable results. Finally, we sum the gene lod score from multiple families to 
generate the overall pVAAST lod score.

Extending the dominant model to de novo mutations. We accommodate 
de novo mutations in our model by allowing Mendelian inheritance errors to 
occur in the pedigree likelihood calculation. Specifically, in the Elston-Stewart 
algorithm37, if the offspring carries a mutation absent from both parents, then 
this transmission has a probability of m (mutation rate per site per generation 
in human genome; default 1.2 × 10–8 (ref. 7)). Accordingly, we also randomly 
introduce Mendelian inheritance error in our gene-drop simulations14 with 
probability equal to the genotyping error rate.

Extending the recessive model to compound heterozygotes. Compound 
heterozygotes require special attention because the genotype vectors (gl and 
gc) now involve more than one variant site. Under the recessive model we are 
specifically interested in the situation where two deleterious mutations occur 
at two different chromosomes of the same gene, so that both copies are defec-
tive. To illustrate, consider a gene with three polymorphism sites, i, j and k. A 
straightforward approach to calculate the gene lod score would be to calculate 
the lod for all pairwise combination of heterozygous variant sites within the 
gene (i.e., i + j; i + k; and j + k) separately and then select the highest lod score. 
This requires the evaluation of n(n − 1)/2 combinations, where n is the number 
of variant sites in the gene. However, this approach is flawed because it assumes 
the genotype disease probabilities for all pairs of sites are independent, which 
is incorrect. Instead, we assume that any variant in the gene is either causal  
(D-variants) or neutral (N-variants)38 with the same relative risk. For example, if a  
gene has four heterozygous sites i, j, k and l, within which i, j, and k are causal, 
then an individual with at least two mutations at i, j and k sites on two different 
chromosomes would be at risk; otherwise she will not be at risk.

Under this model, we can construct a Boolean risk vector for a gene to 
denote whether each variant within the gene is a D-variant or N-variant. If 
we know the underlying risk vector for some gene, then we can easily deter-
mine the genotype of an individual by evaluating whether he or she carries at 
least one D-variant on each chromosome. Then the calculation of lod score 
is reduced to the simple recessive case described above. However, finding the 
optimal risk vector is not trivial, as a brute-force approach to find the risk vec-
tor maximizing the lod score has a complexity of O(2n), where n is the number 
of sites in the gene. To make this more efficient, we use an MCMC method39 
to approximate the optimal risk vector. Briefly, given a particular risk vector 
and the phenotype probability for each genotype, the joint likelihood for all 
sequenced and phenotyped individuals can be calculated as

L r
na r

nb n
nc n

nd= − −r r r r( ) ( )1 1  

where ρr is the probability that an individual with a risky genotype is affected; 
ρn is the probability that an individual with a neutral genotype is affected; na 
and nb are the total numbers of affected and unaffected individuals with a risky 
genotype, respectively; nc and nd are the total number of affected/unaffected 
individuals with neutral genotypes, respectively. Both ρr and ρn are config-
urable parameters, although we found that the performance of our MCMC 
method was usually insensitive to these parameters.

We start with a random risk vector, and randomly select a variant site to 
switch to the opposite value (neutral to risky and risky to neutral). The likeli-
hoods for both risk vectors are calculated, and we selectively accept the new 
risk vector according to the Metropolis-Hastings method39. This process is 
repeated until convergence or the maximal number of iterations is achieved. 
Lastly, we select the most likely risk vector from the Markov chain and calcu-
late the lod score as described in the previous section.

Optionally, the joint likelihood can incorporate an empirical functional 
score. Let ID(k) be an indicator function for whether the kth site is a D-variant. 
The empirical functional score (F score) is a function of VAAST CLRTv scores 
across all sites in the current gene

F
CLRT I k

I k
v k Dk

Dk
=

×∑
∑

( ) ( )

( )2
  

and the updated likelihood is calculated as L* = L × eF.
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The calculation of CLRTv score is detailed in (ref. 12). Briefly, it is twice the 
log-scale composite likelihood ratio of disease model versus null model, incor-
porating the mutation frequency in the control genome and the functional 
impact of the mutation on the protein sequence. This option (mcmc_use_
functional_score) can be switched on or off. We used the updated likelihood 
function throughout the present study, although in our recessive model simu-
lations, these two likelihood functions generated similar results.

Integrating lod scores into the CLR test. pVAAST is built on the framework 
of VAAST12, which uses an extended CLRT to determine a severity score for 
genomic variants. The null model of the CLRT states that the frequency of a 
variant or variant group is the same in the control population (background 
genomes) and the case population (target genomes), whereas the alternative 
model allows these two frequencies to differ. Under a binomial distribution, 
the likelihood for both models can be calculated on the basis of observed 
allele frequencies in the control and case data sets. This likelihood is further 
updated by calibrated amino acid substitution and insertion and deletion 
(indel) severity weights.

To integrate genetic linkage information into the CLRT, we select only one 
sequenced and affected individual from each pedigree (pedigree representative) 
to establish a group of cases. The identifiers of the selected individuals can be 
provided, but if such information is absent, pVAAST will randomly choose one 
individual carrying the highest-scoring variant in the current gene. Additional 
affected individuals not related to any other individuals in the study can also 
be included among the cases. λ represents the natural log of the composite 
likelihood ratio calculated as previously described12. We calculate the pVAAST 
CLRT (CLRTp) score as

CLRT c LODp i
i

n
= −

=
∑ 2

1
l  

where LODi is the lod score for the ith family and

c ln= 2 10* ( )  

To avoid confusion, we denote the original CLRT score in VAAST (without 
the linkage component) as CLRTv in this manuscript. Figure 1 provides a 
schematic diagram for the calculation of the CLRTp scores in pVAAST.

Evaluating the significance of the test statistic. c represents the two parental 
haplotypes at the current gene locus in a particular individual. Let subscript p, pf, 
b and sc represent a vector of cs among all pedigree members, pedigree founders, 
background (control) individuals or sporadic cases, respectively, and a super-
script r or s represent real data and simulated data, respectively. For example, 
cr

pf represents the vector of haplotypes in all pedigree founders in the real data.  
T represents the unordered set of chromosomes among pedigree founders,  
background genomes, and sporadic cases in the real situation. Our null 
hypothesis is that pedigree founders, controls and sporadic cases are derived 
from the same population and that haplotypes in pedigree offspring ran-
domly segregate according to Mendel’s law. When the two haplotypes in each 
sequenced individual are known and all pedigree founders are sequenced, a 
combination of a randomization test and gene-drop simulation can be used 
to evaluate any statistic that is a function of the genotype and phenotype data 
in the pedigree and controls.

We first sample (without replacement) Npf (the cardinality of the set cr
pf, i.e.,  

| cr
pf|) individuals from T as the pedigree founder (denoted by cpf); Nct (< = |cr

b|) 
individuals as the control set for CLRTv calculation (denoted by cct); and Nsc 
(|cr

sc |, which can be 0) individuals as the sporadic cases (denoted by csc). We 
then generate the cp from cpf via gene-drop simulation14. Briefly, we simulate 
the two haplotypes of each offspring by randomly sampling one of each par-
ent’s two haplotypes with equal probability. The gene dropping starts from the 
first generation of the pedigree and is repeated until all pedigree members are 
simulated. g (cp, csc, cct) represents the desired test statistic. In pVAAST, this test 
statistic is CLRTp. The real data in this procedure are represented as cr

p, cr
ct and 

cr
sc, where cr

ct is a random subset of cr
b with size Nct. If we calculate 

P P c c c CLRT c c c CLRTp sc ct p p sc ct p
r= ≥({ , , : ( , , ) })  

within the described sampling space, we will have a valid P value with specified 
type I error under the null model. This holds because the real data are one 
realization of the described sampling scheme with probability equal to any 
other realization under the null hypothesis.

In reality, because enumerating all values of cp, csc and cct is computation-
ally intractable, we use a Monte Carlo method to sample n realizations of the 
described procedure and calculate

P
I CLRT CLRT

n

p i
s

p
r

i
n

=
+ ≥

+
=∑1

1
1 ( ),

 

(I is an indicator function) and report this as the gene-level P value. 
Alternatively, P value can be calculated using the lod score instead of CLRTp 
score as the test statistic.

We emphasize two points: (i) the number of sporadic cases can  
be 0 and (ii) the choice of Nct is free and does not affect the validity of  
the P value.

To sample from T, the above procedure requires that the haplotypes of 
all pedigree founders are known. In reality, cr

pf can be unknown or partially 
known because pedigree founders may not have been sequenced, thus we 
may not be able to directly sample from T. To accommodate this situation, we 
define a new set T* to be the unordered set of haplotypes among pedigree rep-
resentatives (one affected sequencing individual in each pedigree, as denoted 
in the pVAAST parameter file), background genomes and sporadic cases in 
the real situation. Obviously we have

T T* ⊂  

We propose sampling our test-statistics CLRTp from the cumulative distribu-
tion function

F CLRT c c c c c c TCLRTp p p sc ct pf ct sc( ( , , ) | , , )*⊂  

during the simulation to approximate the distribution

F CLRT c c c c c c TCLRTp p p sc ct pf ct sc( ( , , ) | , , )⊂  

The approximation becomes more accurate when the |T − T*| << |T|, or in 
other words, when the number of unsequenced founders is small compared to 
the total number of sequenced background individuals, pedigree representa-
tives and sporadic cases. Our implementation also approximates the idealized 
procedure owing to haplotype phase uncertainty. Despite these approxima-
tions, we observed no inflation in type I error rate in any of the experiments 
we evaluated (Supplementary Figs. 1 and 2).

We also documented the implementation of our simulation procedure in 
pVAAST in Supplementary Note 4.

Genomic data. For the enteropathy pedigree, whole-genome sequencing 
was performed on all four pedigree members using the Illumina HiSeq plat-
form. We followed the Genome Analysis Toolkit (GATK) best practice to 
perform variant-calling steps40. Briefly, we used Burrows-Wheeler Aligner 
to align reads41, GATK40 to remove PCR duplicates and perform indel rea-
lignment and UnifiedGenotyper in GATK40 to jointly call the genotypes in 
the sequenced pedigree members and 136 exomes from the 1000 Genomes 
Project42. The 136 exomes used as controls include individuals with west-
ern European ancestry (CEU) and British in England and Scotland (GBR). 
Potential disease-causing mutations were validated with Sanger sequencing 
at the University of Utah sequencing core. For the cardiac septal defect pedi-
gree, Complete Genomics performed whole-genome sequencing and variant 
calling on selected pedigree members.

For the results presented the sections on cardiac septal defects, Miller 
Syndrome and challenging situations in pedigree studies, we used the control 
genome set consisting of 1,057 exomes from 1000 Genomes Project phase I  
data43, 54 genomes from the Complete Genomics Diversity Panel44, 184 
Danish exomes45 and nine nonduplicative genomes from the 10Gen data 
set46, representing a wide variety of ethnicities and sequencing platforms. To 
include a wider set of variants that are unlikely to be causal for rare Mendelian  
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diseases, we further collected high-quality variants (defined as polymorphism 
sites with sample sizes no smaller than 100 chromosomes) from dbSNP build 137  
(http://www.ncbi.nlm.nih.gov/SNP/) and NHLBI exome sequencing  
data (http://evs.gs.washington.edu/EVS). We then randomly inserted these 
variants into the control genome set, setting the minor allele frequency equal 
to the reported value.

Secondary analysis studies were approved by the Western Institutional Review 
Board for the cardiac septal defects and Miller’s syndrome (dbGAP phs000244.
v1.p1) pedigrees after initial studies were approved by local institutional review 
boards at sites interacting with participants. Procedures followed were in accord-
ance with institutional and national ethical standards of human experimentation.  
Proper informed consent was obtained.

pVAAST runtime. pVAAST supports multithreading parallelization. The 
computational time is proportional to the size of pedigree and to the rounds 
of randomization tests being performed. On our Linux server with Intel 
Xeon 2.00 GHz CPUs, the enteropathy pedigree took 0.6 h (clock time) using 
40 threads (1 × 108 maximum randomizations). The cardiac septal defect  
pedigree took 181 h (clock time) using 40 threads (maximum randomiza-
tions: 1 × 109). The Miller’s syndrome pedigree took 0.3 h (clock time) using  
70 threads (maximum randomizations: 1 × 106).

Software access. pVAAST is available for download at http://www.yandell-lab.
org/software/vaast.html with an academic user license. The source code for 
pVAAST is included as Supplementary Software.
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